Objectives: You will be able to find the x and y intercepts of graphs and equations, find solutions graphically, and find the points of intersection between two graphs.

Recall: Find the x-and y-intercepts of the graph $2 x+5 y=3$.

$$
\begin{array}{rr}
\text { graph } 2 x+5 y=3 . & 2 x=3 \\
x=\text { int: }(1.5,0) & x=3 / 2 \\
y-\operatorname{int}:(0,0.6) & 5 y=3=315
\end{array}
$$

Nov 24-6:27 PM

Example 2: Use a graphing calculator to find the solution of $2 x^{2}-3 x=2$.
$2=2 x^{2}-3 x-2$

$$
x=-1 / 2,2
$$

Nov 24-6:30 PM

Example 4: text p. 185 \#73

$$
t(d)=d / 63+\frac{280-d}{54}
$$

The x-intercept is also called a zero of a function

- The point $(a, 0)$ s and x-intercept of the graph $y=f(x)$
- The number ais a zero of the function f.
- The number a is a solution of the equation $f(x)=0$.

Example 1: Verify that -4 and 3 are zeros of the function $f(x)=x^{2}+x-12$

$$
\begin{gathered}
(-4)^{2}+4-12=0 \\
3^{2}+3-12=0
\end{gathered}
$$

Nov 24-6:28 PM

Example 3: Use a graphing calculator to find the points) of intersection for the graphs of $x^{3}-y=3$ and $2 x+y=5$.

Nov 24-6:31 PM

Example 5: text p. 185 \#74
a.) $C(x)=25000+18.65 x$
c.) 9383 units

Example 6: text p. 185 \#78

Example 7: text p. 185 \#80

$$
\begin{aligned}
& 6090=-77.6 t+6671 \\
&-661=-77.6 t \\
& 8.65=t \\
& \text { duving } 1998
\end{aligned}
$$

Now you try!!
text p. 185 \#76, 77, 79, 81, 83-85 \& 11-13 (algebraically)

Nov 30-12:48 PM

